2020

Phase Behavior that Enables Solvent-Free Carbonate-Promoted Furoate Carboxylation

Frankhouser, A. D.; Kanan, M. W. JPC Lett., 2020, X (X), XXXX-XXXX.   PDF

toc

Point-of-care analysis of blood ammonia with a gas-phase sensor

Veltman, T; Tsai, C. J.; Gomez-Ospina, N; Kanan, M. W.; Chu, G. ACS Sens, 2020, X (X), XXXX-XXXX.   PDF

Polyamide Monomers Via Carbonate-Promoted C–H Carboxylation of Furfurylamine

Lankenau, A. W.; Kanan, M. W. Chem. Sci., 2020, 11, 248-252.   PDF

2019

A Closed Cycle for Esterifying Aromatic Hydrocarbons with CO2 and Alcohol

Xiao, D. J.; Chant, E. D.; Frankhouser, A. D.; Chen, Y.; Yau, A.; Washton, N.; Kanan, M. W. Nat. Chem, 2019, 11, 940-947.   PDF

TOC18
TOC17

2018

Carbonate-Promoted Hydrogenation of Carbon Dioxide to Multicarbon Carboxylates

Banerjee, A.; Kanan, M. W. ACS Cent. Sci., 2018, 4, 606-613.   PDF

2017

Selective Increase in CO2 Electroreduction Activity at Grain Boundary Surface Terminations

Mariano, R.G.; McKelvey, K.; White, H. S.; Kanan, M. W. Science, 2017, 358, 1187-1192.   PDF

TOC16

Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D

Yau, A.; Harder, R.; Kanan, M. W.; Ulvestad, A. ACS Nano, 2017, 11, 10945-10954.   PDF

Bragg Coherent Diffractive Imaging of Single-Grain Defect Dynamics in Polycrystalline Films

Yau, A.; Cha, W.; Kanan, M. W.; Stephenson, G.B.; Ulvestad, A. Science, 2017, 356, 739-742.   PDF

TOC15

A Scalable Carboxylation Route to Furan-2,5-dicarboxylic Acid

Dick, G. R.; Frankhouser, A. D.; Banerjee, A; Kanan, M. W. Green Chem., 2017, 19, 2966-2972.   PDF

Electrostatic Control of Regioselectivity in Au(I)-catalyzed Hydroarylation

Lau, V. M.; Pfalzgraff, W. C.; Markland, T. E.; Kanan, M. W. J. Am. Chem. Soc., 2017, 139, 4035-4041.   PDF

Molecular Catalysis at Polarized Interfaces Created by Ferroelectric BaTiO3

Beh, E. S.; Basun, S. A.; Feng, X.; Idehenre, U. I.; Evans, D. R.; Kanan, M. W. Chem. Sci., 2017, 8, 2790-2794.   PDF

2016

A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles

Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. ACS Cent. Sci., 2016, 2, 169-174.   PDF

TOC13

Carbon Dioxide Utilization via Carbonate-promoted C–H Carboxylation

Banerjee, A; Dick, G. R.; Yoshino, T.; Kanan, M. W. Nature, 2016, 531, 215-219.   PDF

2015

Probing The Active Surface Sites For CO Reduction on Oxide-Derived Copper Electrocatalysts

Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown J. T.; Kumar, M.; Stephens, I. E. L.; Kanan; M. W.; Chorkendorff, Ib.

J. Am. Chem. Soc., 2015, 137, 9808-9811.   PDF

Grain Boundary–Dependent CO2 Electroreduction Activity

Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W. J. Am. Chem. Soc., 2015, 137, 4606–4609.   PDF

Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes

Lee, C. H.; Kanan, M. W. ACS Catal., 2015, 5, 465–469.   PDF

2014

Electrostatic Control of Regioselectivity via Ion Pairing in a Au(I)–Catalyzed Rearrangement

Lau, V. M.; Gorin, C. F.; Kanan, M. W. Chem. Sci. 2014, 5, 4975–4979.   PDF

Alkaline O2 Reduction on Oxide-Derived Au: High Activity and 4e Selectivity without (100) Facets

Min, X.; Chen, Y.; Kanan, M. W. Phys. Chem. Chem. Phys. 2014, 16, 13601–13604.   PDF

Electroreduction of Carbon Monoxide to Liquid Fuel on Oxide-Derived Nanocrystalline Copper

Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504–507.   PDF

2013

Interfacial Electric Field Effects on a Carbene Reaction Catalyzed by Rh Porphyrins

Gorin, C. F.; Beh, E. S.; Bui, Q. M.; Dick, G. R.; Kanan, M. W. J. Am. Chem. Soc. 2013, 135, 11257–11265.   PDF

2012

Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles

Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969–19972.   PDF

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films

Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231–7234.   PDF

An Electric Field–Induced Change in the Selectivity of a Metal Oxide–Catalyzed Epoxide Rearrangement

Gorin, C. F.; Beh, E. S.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 186–189.   PDF

Previous Work

Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH

Surendranath, Y.; Kanan, M. W.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 16501–16509.   PDF

Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-Ray Spectroscopy

Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinca, M.; Yachandra, V. K.; Nocera, D. G. J. Am. Chem. Soc. 2010, 132, 13692–13701.   PDF

Cobalt-Phosphate Oxygen-Evolving Compound

Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Chem. Soc. Rev. 2009, 38, 109–114.   PDF

Synthesis of Acyclic α,β-Unsaturated Ketones via Pd(II)-Catalyzed Intermolecular Reaction of Alkynamides and Alkenes

Momiyama, N.; Kanan, M. W.; Liu, D. R. J. Am. Chem. Soc. 2007, 129, 2230–2231.   PDF

Reaction Discovery Enabled by DNA-Templated Synthesis and In Vitro Selection

Kanan, M. W.; Rozenman, M. M.; Sakurai, K.; Snyder, T. M.; Liu, D. R. Nature 2004, 431, 545–549.   PDF

Multi-Step Small-Molecule Synthesis Programmed by DNA Templates

Gartner, Z. J.; Kanan, M. W.; Liu, D. R. J. Am. Chem. Soc. 2002, 124, 10304–10306.   PDF

Expanding the Reaction Scope of DNA-Templated Synthesis

Gartner, Z. J.; Kanan, M. W.; Liu, D. R. Angew. Chem. Int. Ed. 2002, 41, 1796-1800.   PDF

Facile Synthesis of a Fluorescent Deoxycytidine Analogue Suitable for Probing the RecA Nucleoprotein Filament

Singleton, S. F.; Shan, F.; Kanan, M. W.; McIntosh, C. M.; Stearman, C. J.; Helm, J. S.; Webb, K. J. Org. Lett. 2001, 3, 3919–3922.   PDF

MATT KANAN

mkanan (at) stanford (dot) edu
650-725-3451

MAILING ADDRESS

Stanford University
Department of Chemistry
337 Campus Drive
Lorry I. Lokey Laboratory
Stanford, CA 94305-4401