Selective Increase in CO2 Electroreduction Activity at Grain Boundary Surface Terminations
Mariano, R.G.; McKelvey, K.; White, H. S.; Kanan, M. W.     Science, 2017, 358, 1187-1192.

Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D
Yau, A.; Harder, R.; Kanan, M. W.; Ulvestad, A.     ACS Nano, 2017, 11, 10945-10954.

Bragg Coherent Diffractive Imaging of Single-Grain Defect Dynamics in Polycrystalline Films
Yau, A.; Cha, W.; Kanan, M. W.; Stephenson, G.B.; Ulvestad, A.     Science, 2017, 356, 739-742.

A Scalable Carboxylation Route to Furan-2,5-dicarboxylic Acid
Dick, G. R.; Frankhouser, A. D.; Banerjee, A; Kanan, M. W.    Green Chem., 2017, 19, 2966-2972.

Electrostatic Control of Regioselectivity in Au(I)-catalyzed Hydroarylation
Lau, V. M.; Pfalzgraff, W. C.; Markland, T. E.; Kanan, M. W.    J. Am. Chem. Soc., 2017, 139, 4035-4041.

Molecular Catalysis at Polarized Interfaces Created by Ferroelectric BaTiO3
Beh, E. S.; Basun, S. A.; Feng, X.; Idehenre, U. I.; Evans, D. R.; Kanan, M. W.    Chem. Sci., 2017, 8, 2790-2794.


A Direct Grain-Boundary-Activity Correlation for CO Electroreduction on Cu Nanoparticles
Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W.    ACS Cent. Sci., 2016, 2, 169-174.

Carbon Dioxide Utilization via Carbonate-promoted C–H Carboxylation
Banerjee, A; Dick, G. R.; Yoshino, T.; Kanan, M. W.   Nature, 2016, 531, 215-219.


Probing The Active Surface Sites For CO Reduction on Oxide-Derived Copper Electrocatalysts
Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown J. T.; Kumar, M.; Stephens, I. E. L.; Kanan; M. W.; Chorkendorff, Ib.   J. Am. Chem. Soc., 2015, 137, 9808-9811.

Grain Boundary–Dependent CO2 Electroreduction Activity
Feng, X.; Jiang, K.; Fan, S.; Kanan, M. W.   J. Am. Chem. Soc., 2015, 137, 4606–4609.

Pd-Catalyzed Electro-Hydrogenation of Carbon Dioxide to Formate:
High Mass Activity at Low Overpotential and Identification of the Deactivation Pathway

Min, X.; Kanan, M. W.   J. Am. Chem. Soc., 2015, 137, 4701–4708.

Controlling H+ vs CO2 Reduction Selectivity on Pb Electrodes
Lee, C. H.; Kanan, M. W.   ACS Catal., 2015, 5, 465–469.


Electrostatic Control of Regioselectivity via Ion Pairing in a Au(I)–Catalyzed Rearrangement
Lau, V. M.; Gorin, C. F.; Kanan, M. W.   Chem. Sci. 2014, 5, 4975–4979.

Alkaline O2 Reduction on Oxide-Derived Au: High Activity and 4e- Selectivity without (100) Facets
Min, X.; Chen, Y.; Kanan, M. W.   Phys. Chem. Chem. Phys. 2014, 16, 13601–13604.

Electroreduction of Carbon Monoxide to Liquid Fuel on Oxide-Derived Nanocrystalline Copper
Li, C. W.; Ciston, J.; Kanan, M. W.   Nature 2014, 508, 504–507.


Interfacial Electric Field Effects on a Carbene Reaction Catalyzed by Rh Porphyrins
Gorin, C. F.; Beh, E. S.; Bui, Q. M.; Dick, G. R.; Kanan, M. W.   J. Am. Chem. Soc. 2013, 135, 11257–11265.


Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
Chen, Y.; Li, C. W.; Kanan, M. W.   J. Am. Chem. Soc. 2012, 134, 19969–19972.

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
Li, C. W.; Kanan, M. W.   J. Am. Chem. Soc. 2012, 134, 7231–7234.

Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts
Chen, Y.; Kanan, M. W.   J. Am. Chem. Soc. 2012, 134, 1986–1989.

An Electric Field–Induced Change in the Selectivity of a Metal Oxide–Catalyzed Epoxide Rearrangement
Gorin, C. F.; Beh, E. S.; Kanan, M. W.   J. Am. Chem. Soc. 2012, 134, 186–189.

Previous Work

Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH
Surendranath, Y.; Kanan, M. W.; Nocera, D. G.   J. Am. Chem. Soc. 2010, 132, 16501–16509.

Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-Ray Spectroscopy
Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinca, M.; Yachandra, V. K.; Nocera, D. G.   J. Am. Chem. Soc. 2010, 132, 13692–13701.

Cobalt-Phosphate Oxygen-Evolving Compound
Kanan, M. W.; Surendranath, Y.; Nocera, D. G.   Chem. Soc. Rev. 2009, 38, 109–114.

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
Kanan, M. W.; Nocera, D. G.   Science 2008, 321, 1072–1075.

Development and Initial Application of a Hybridization-Independent, DNA-Encoded Reaction Discovery System Compatible with Organic Solvents
Rozenman, M. M.; Kanan, M. W.; Liu, D. R.   J. Am. Chem. Soc. 2007, 129, 14933–14938.

Synthesis of Acyclic α,β-Unsaturated Ketones via Pd(II)-Catalyzed Intermolecular Reaction of Alkynamides and Alkenes
Momiyama, N.; Kanan, M. W.; Liu, D. R.   J. Am. Chem. Soc. 2007, 129, 2230–2231.

Reaction Discovery Enabled by DNA-Templated Synthesis and In Vitro Selection
Kanan, M. W.; Rozenman, M. M.; Sakurai, K.; Snyder, T. M.; Liu, D. R.   Nature 2004, 431, 545–549.

Multi-Step Small-Molecule Synthesis Programmed by DNA Templates
Gartner, Z. J.; Kanan, M. W.; Liu, D. R.   J. Am. Chem. Soc. 2002, 124, 10304–10306.

Expanding the Reaction Scope of DNA-Templated Synthesis
Gartner, Z. J.; Kanan, M. W.; Liu, D. R.   Angew. Chem. Int. Ed. 2002, 41, 1796–1800.

Facile Synthesis of a Fluorescent Deoxycytidine Analogue Suitable for Probing the RecA Nucleoprotein Filament
Singleton, S. F.; Shan, F.; Kanan, M. W.; McIntosh, C. M.; Stearman, C. J.; Helm, J. S.; Webb, K. J.   Org. Lett. 2001, 3, 3919–3922.